Int. J. Heat Mass Transfer.

Vol. 26, No. 11, pp. 16491660, 1983

Printed in Great Britain

0017-9310,8333.0040.00
Pergamon Press Ltd.
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ANISOTROPIC SCATTER
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Abstract—The absorption, scatter and extinction efficiencies of a fly ash cloud are shown to have a primary
dependenceon the complexabsorptionindex of the particles withasecondary dependence ontemperatureand
particle size distribution. The Monte Carlo method is then used to predict radiative transfer in a slab and
cylindrical furnace enclosures. Approximating anisotropic scatter by a forward directed flux and an
isotropically scattered flux is shown to give adequate estimates of transfer, and several criteria for estimating
the fraction of isotropic scatter are examined.
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NOMENCLATURE

particle sizc parameter

area of ith surface zone [m?]

specific projected area for particle cloud
‘[m*kg™1]

Planck function for spectral distribution
of black body emission [W m ™3]

dust burden [kg m™3]

cumulative phase function, equation (11)
constants for particle size distribution
[_1 #m]

diameter of the cylindrical geometry [m]
black emissive power [W m™?]

error in hemispherical properties, and
difference in hemispherical properties
defined by equations (19) and (20),
respectively

fraction of energy scattered in the forward
hemisphere

mass frequency distribution for particle
size

mass cumulative distribution for particle
size

K, K, K, absorption, scattering and extinction
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coefficient [m™']

probable mean free path [m]

length of cylindrical geometry [m]
thickness of plane parallel geometry [m]
complex refractive index, m = n—in!
refractive index

absorption index

total number of zones

p(0, ), p() phase function

Pe
Q.
Qi-——‘j

Q.

peakedness defined by equation (35)

net radiative transfer to ith zone [W]

net radiative interchange from ith zone to
jth zone (kW]

nct radiative transfer to the cylindrical
surface [kW]

0..0.,0,. absorption, scattering and extinction

R

efficiencies

random numbers uniformly distributed
between 0 and 1

particle diameter [um]

5357 direct exchange arca between ith and jth
zone [m?]
5:5..8.G; total exchange area between ith and jth
zone [m?]
T temperature [K]
V; volume of ith gas zone [m?] .
W weight assigned for exchange area §;S; in
equation (27)
XY; total exchange area between ith and jth
zone [m?]
Greek symbols
o absorptivity in equation (19) and (20),
otherwise fraction of anisotropically
scattered energy assumed to scatter
isotropically, equation (31)
o absolute relative deviation in £ §;S;
+ X §;G,, defined by equation (25)
A mean difference
A.,. maximum difference
]AQ|  modulus of the mean diflerence in heat
transler estimates
AQ... maximum difference in heat transfer
estimates
€ hemispherical emissivity
0,¢ polar and azimuthal angles
2 wavelength [pm]
i cos 0
p hemispherical reflectivity
Po density of the particle [kg m ™3]
a Stefan-Boltzmann constant
[Wm™2K™*]
T hemispherical transmissivity/optical
thickness
(2] albedo of scatter
Superscript
* best estimate in equation (27)
B average
Subscript
i,j,k  zone number
a absorption
c extinction
r reflected
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s scaitered

t transmitted

T total

0 exact

L estimates by Lowe [2]
max maximum

1. INTRODUCTION

A rReCeNTreview [ 1] has concluded that the fine fly ash
carried in the combustion gases of furnaces fired with
pulverized coal {p.c) can be an important—perhaps
dominating—emitter.

The radiative behaviour of a particle is determined
by the ratio of its circumference to the wavelength of
thermal radiation, called the particle size parameter,
a=rmnsf/}), and the complex refractive index,
m = n—in'.

For a « 1.0, absorption and emission are propor-
tional to the volume occupied by the particles, and
scatter can be neglected, e.g. soot in furnaces.

For a » 1.0, absorption and emission are propor-
tional to the projected area of the particle,and although
significant radiation is scattered, its deviation is only
very slight and can generally be neglected. Particle
propertiesapproach those ofa macroscopicsurface,e.g.
unburnt char in furnaces.

For a = 1.0, both absorption and scattering are
important. Scatter is predominantly forward with
significant sideways and backwards. For most p.c.
ashes, 909 of the mass lies between 2 and 100 gm, and
at the temperatures found in furnaces, from 1200 to
2000 K, 90% of the thermal radiation spectrum lies
between a lower wavelength from 1.6 to 0.9 um, to
an upper wavelength from 10.3 to 5.9 ym. Therefore,
taking extreme values

0.6 < a < 350.

Scatter can therefore be significant, particularly the
scatter of the long wavelength radiation by the finest
ash particles.

The effect of such a fly ash cloud can be predicted
from a knowledge of the size distribution of the cloud,
the ash concentration, and the radiative properties
defined in terms of the complex refractive index of the
particles. The complex refractive index contains the
(real) refractive index, n, for which experimental data
exist for many ash-like materials [2, 3], and the
absorption index, n!, for which there is comparatively
little data. A simple estimate suggests that the
uncertainty in the absorption index alone can lead to
errors of 20% in predicted radiative heat transfer [1].

The literature details many previous studies of
relevance.

Several exact and approximate techniques are
available for analysing isotropic and anisotropic
scatter in media between semi-infinite parallel plates
[4-6]. The anisotropic radiative transfer from a
particulate cloud in a parallel plane geometry has been
studied by Love and Grosh [7], Hsia and Love [8] and
Shahrokhi and Wolf [9]. Steward and Guruz [10]
applied the Monte Carlo method to the same problem
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and compared the results with those of Love and Grosh.
Later, Lowe [2] used the multiflux technique of
Shahrokhi and Wolf to calculate the hemispherical
radiative properties of a plane parallel particulate
cloud with a particle size distribution and refractive
index estimated for fly ash.

There appear to be only two studies considering
anisotropic scatter in geometries closer to those of
industrial furnaces. Stockham and Love [11]
investigated thermal radiative transfer from a
cylindrical cloud ofabsorbing,emitting and anisotropi-
cally scattering particles, using the Monte Carlo
method. Steward and Guruz [12] also used the Monte
Carlo method to analyse the effect of
alumina/magnesia/soot particles on radiative transfer
in cylindrical furnaces.

The present contribution uses the Monte Carlo
method and zoning technique to examine anisotropic
scatter in enclosures.

Initially, the cloud and ash properties required for
the calculation of radiative transfer are outlined
(Section 2), and then the accuracy of the Monte Carlo
technique is examined in the plane paraliel geometry
for which analytical solutions are available (Section 3).
Section 4 then presents predictions for cylindrical
furnace enclosures, leading to the examination of
possible approximations for anisotropic scatter.

2. RADIATIVE PROPERTIES OF A
PARTICLE CLOUD

2.1. Efficiency factors and phase function for a single
particle

For a single particle of diameter s, an absorption
efficiency Q, , , at wavelength A, can be defined as the
ratio of the energy absorbed by the particle to the
energy intercepted by the particle. Similarly, the
scattering efficiency, Q, ; is the ratio of the energy
scattered to the energy intercepted by the particle. The
phase function, p, (0, ¢),is the ratio of energy scattered
per unit solid angle in the (0, ¢) direction to the total
energy scattered and is defined such that

1= j Rr” pad0,$)sin 040 dp. (1)
4n Jo Jo

For convenience the phase function may be taken to be
independent of azimuthal angle ¢ (which is true for
spherical particles) and expressed as p; (u), where p
= cos 0. Equation (1) is transformed to

1
f . PasW)du=2. 2

2.2. Absorption and scattering coefficients for a cloud

The spectralabsorption coefficient, K, , foraparticle
cloud is defined as the fraction of radiation absorbed
from a beam per; unit length. The spectral scattering
coefficient, K, , is defined in a similar manner and the
extinction coefficient, K, ; is defined as the sum of the
two coefficients K, ; and K, ;.

For a particle cloud with a fly ash loading B, the
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absorption coefficient is given by
Ka,l = Qa.ABAp (3)

where Q, is the cloud absorption efficiency, and 4, the
projected surface area of the cloud, defined as

r Lf6)/s1Q. 1.9 ds
Qur=""—1 , “)
f [/(s)/s1ds
(]
Ap - 1.5x 108 J“’j:@ ds, )
Py o S

wheref(s)is the mass frequency function for the particle
size distribution.

The spectral cloud scattering and extinction
efficiencies are evaluated similarly, the phase function
being integrated over the particle size distribution as
follows

: P10 LS(5)s] ds
pap) =

= - (6)
Qs L Lf(s)/s]ds

The single particle absorption, scatter and extinction
efficiencies and phase function may be calculated from
the Mie thoery [13-15]). These efficiencies are
complicated functions of the particle size parameter—
and therefore of the wavelength of radiation—and the
complex refractive index of the particles. A recent
examination [1] of published data of materials
chemically similar to fly ash suggests that the real
refractiveindex nis approximately 1.5, but the complex
absorption index n! may vary from 0.005 to 0.5.

Individual fly ash particles are not homogeneous in
shape, size or chemical composition [16], but in
order to extend the theoretical treatment to fly ash, we
assume that all particles are spherical and of the same
chemical composition—a requirement for any experi-
mental estimate of the complex refractive index for a
particle cloud in the laboratory or field. Willis [17] has
defined the complex refractive index of a particle as the
complex refractive index of the materialin the form of a
sphere having the same scattering pattern as the
particle. The definition can be extended to a particle
cloud. This definition enables the Mie theory to be
applied to a fly ash cloud.

Estimates of cloud efficiencies for typical coarse and
fine size distributions of fiy ash are presented in Fig. 1.
Three distributions, with mass cumulative size
distribution, F(s), given by equation (7), have been
considered, the mass frequency size distribution
function, f(s), being expressed by equation (8)

F(s) = C, exp(—Cy/fs), 0]
S(5) = dF(s)/ds = (C,C,/s*)exp(—Cafs).  (8)

The constants C,,C, for the three distributions are
presented in the Appendix with a discussion of the size
distributionfunction. The mass mediandiameters {509
of the mass being below the mass median diameter), for
the distributions are 24, 20 and 11 um, respectively.
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FiG. 1. Variation of the cloud efficiencies at a wavelength of
2.67 ym with the complex absorption index for fine (f) and
coarse (c) particle size distributions with ranges indicated for
clay mixtures (Si0,/Al1,0;), (A) the fly ash range originally
proposed by Wall et al. (1] and (B) modified by Gupta and
Wall [3]. The real refractive index, n has been taken as 1.5.

Figure 1 suggests a primary dependence of the radiative
properties on the complex absorption index with a
secondary influence of particle size distribution. This
conclusion is in agreement with Buckius and Hwang
{18] who have demonstrated that cloud efficiencies are
relatively independent of particle size distribution fora
much wider size range.

2.3. The effect of temperature on cloud properties

The total radiative properties of the particle cloud at
a particular temperature can be obtained from the
(Planck) weighted average of the spectral property. For
example, the total cloud absorption efficiency is given
by

" 0,:BAT)d2
Q= "~ )

r B(T)d2
o

where B, is the Planck function for the spectral
distribution of black body radiation.

The total scattering and extinction efficiencies for a
cloud are evaluated in a similar manner. The phase
function for the cloud is also obtained by integration
over wavelength, as follows

r Px(1)0, 1B, d2
A (10)

Q,r B, d2

]

plp) =

Leguerre quadrature has been used for the numerical
integration over particle sizes and wavelengths. A
fortieth-order quadrature has been found to be
sufficient for evaluating spectral properties of the cloud,
while a fifth-order quadrature has been used to
integrate the spectral properties and efficiencies.
Spectral cloud efficiencies have been calculated at
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FIG. 2. Variation of the cloud extinction and absorption efficiencies with wavelength and temperature, for
coarse (c), average (a) and fine (f) particle size distributions, from equation (8).

wavelengthsfrom 1 to 10um, and total cloud efficiencies
from 1200 to 1800 K for the three particle size
distributions and refractive indices of 1.5—0.005i and
1.5—0.05i (see Fig. 2). Figure 2 indicates that the
spectral cloud efficiencies vary significantly with
wavelength but when integrated over the spectrum
according to equation (9) they are fairly constant over
the temperature range of interest for furnaces. To allow
the cloud efficiency to vary with temperature
complicates calculations a great deal, and Fig. 2
indicates that efficiencies at an average furnace
temperature might be used rather than allowing them
to vary with temperature over the furnace volume. This
simplification is used in future sections.

Figure 3 shows the phase function, p(p), and
cumulative phase function, C(u), for the coarse particle

size distribution where

() = J " b dp

(11)

Figure 3 shows thata higher absorptionindex resultsin
a more forward directed scatter and as the absorption
index decreases, the phase function tends to become
circular and the cumulative phase function approaches
the linear relation characteristic of isotropic scatter.

3. PLANE PARALLEL GEOMETRY

For media contained between two infinite parallel
plates, the hemispherical absorptivity, reflectivity and
transmissivity have been calculated numerically for
isotropic scatter [6] and anisotropic scatter [2] due to
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F1G. 3. Phase functions and cumulative phase functions for different complex reflective indices and coarse size
distribution of fly ash particle cloud at 1500 K.
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fly ash, and these results allow an evaluation of the
accuracy and reproducibility of the present Monte
Carlo technique.

3.1. The Monte Carlo method

The Monte Carlo method is a statistical procedure
which can simulate the emission, absorption and
scatter of bundles of radiant energy (or photons)as they
traverse a gascous medium. The radiative events arc
characterized in terms of random numbers R(0, 1) (R in
the equations below). Howell [19] has reviewed and
discussed, in detail, the application of the Monte Carlo
method to radiative transfer. Love and Grosh [7],
Steward and Guruz[10], and Plass and Kattawar [20]
have applied the Monte Carlo method to anisotropic
scattering media.

For computation of the radiative hemispherical
properties of a slab by the Monte Carlo method, a fixed
number of energy bundles is taken to be emitted from
one surface of the slab.

The emission direction of an energy bundle,
determined by the azimuthal angle ¢» and polar angle 0,
is given by

¢ = 2nR,, (12)
cos 0 =,/R,, (for a plane surface), (13)
cos 0 = 1.0—2R,, (for a gas). (14)
The probable mean free path is given by
I=—(1/K)In Ry, (15)
where
K. =K, +K,. (16)

If, after travelling the distance given by the probable
mean free path, the energy bundle has intercepted the
oppositeside of theslab, thenitis assigned to the tally of
bundles transmitted. Although not considered in the
present study, the reflections off bounding surfaces can
be taken into account by comparing the reflectivity
with another random number and re-emitting the
bundle from the surface if it is not absorbed. If the
bundleis not transmitted, another random number, R,
is compared with the albedo of scatter

o =KJ/K,, (17

andif Rsisless than w, then the bundleis assigned to the
tally of those absorbed, otherwise the bundle is
scattered. Forisotropicscatter, thiseventis treatedasa
new emission, using equations (12) and (14). For
anisotropicscatter, the cumulative phase function from

C(i) = 2.0R,, (18)

determines the new direction of the bundle with respect
to the incident direction. Equation (15) assigns the
bundle a new mean free path. The bundle is then
followed until it reaches a boundary (transmission or
reflection) or is absorbed. An energy bundle reaching
the surface of emission after single or multiple scatter is
considered as reflected by the slab. The proportion of
bundles assigned to the three possible fates determines
the transmissivity, absorptivity and reflectivity of the
slab.
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Table 1. Effect of number of bundles emitted on the accuracy of
the Monte Carlo method for isotropic scatter in the plane
parallel geometry

No. of bundles ey €1, max
500 0.0346 0.1012

1000 0.0337 0.0812

2500 0.0189 0.0576
5000 0.0123 0.0456

7500 0.0109 0.0432
10000 0.0110 0.0272

3.2. Isotropic scatter

The accuracy of the above technique was evaluated
by comparison of the Monte Carlo predictions with the
exact results tabulated by Ozistk [6]. The following
error criterion has been used

(19)

with the average, €y, and maximum, e, ,.,, for 50 cases
(w0 =0.1,02,03,04,0.5,06,0.7,08,09,095; K L,
=0.1,0.5, 1.0,2.0, 5.0) being given in Table 1. Figure 4
shows the comparison for the case with 2500 energy
bundles. No trend is observed regarding the behaviour
of the error with respect to the albedo of scatter and the
extinction coefficient. As expected, the error decreases
with an increase in the number of energy bundles
considered.

ey = [a—ug|+|p—po| +lr—10l,

3.3. Anisotropic scatter

Lowe [2] has previously calculated the hemi-
spherical properties of plane parallel particle clouds
with the coarse particle size distribution, for optical
thicknesses of 0.5, 1.0, 2.0, 4.0 and 8.0 and complex
refractive indices of 1.437—0.307i, 1.50—0.05i, 1.50

ABSORPTIVITY, a
1 i I i
/

mX
¥

1

O+ x DO
=)
wn
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ﬁ

TRANSMISSIVITY, t  REFLECTIVITY, p

0 a a
0 02 04 06 08 10

ALBEDO OF SCATTER, w=Ks/Ke

F1G.4. Comparison of the hemispherical properties of a slab by

the Monte Carlo method tracking 2500 energy bundles

(points)and Ozisik’s data [6](lines) for isotropically scattering
media.
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F1G. 5. Comparison of the hemispherical properties of aslab by
the Monte Carlo method and multiflux method of Lowe for
anisotropic scattering media.

—0.01iand 1.50—0.0051, at wavelengths 1.3537, 2.6671
and 6.7865 um. Lowe used the multiflux method similar
to that used by Shahrokhi and Wolf [9] with 16
discrete directions to convert the radiative transfer
equation into a set of ordinary differential equations,
which were solved by standard finite difference
schemes. Lowe’s solution technique gave hemisphe-
rical properties of isotropically scattering slabs in
excellent agreement with the exact solutions, and the
heat transfer results for anisotropically scattering
media were in good agreement with those of Hsia and
Love[8]. Therefore, Lowe’s results have been used here
to evaluate the Monte Carlo method for anisotropic
scatter. The Monte Carlo method has been applied to
all the cases mentioned above. For the spectral
hemispherical properties, &, and e, ,,, for the 60 cases
were 0.0209 and 0.0785, respectively for 2500 bundles.

ey =la—ay|+|p—pLl+|t—1Ll (20)

The total hemispherical properties were obtained by
integrating the spectral hemispherical properties over
wavelengthina manner similar toequation(9). Figure 5
shows that the present Monte Carlo results fall within
5% of Lowe’s results.

The total hemispherical properties may also be
obtained by using the total efficiencies and the total
phase functions, from equations (9) and (10), in the
Monte Carlo simulation. The total hemispherical
properties thus obtained may be compared with those
from integration of the spectral hemispherical
properties of the cloud over all wavelengths, for com-
plex refractive indices m = 1.437—0.307i and 1.5—ki,
where k = 0.1, 0.05, 0.02, 0.01 and 0.005, and cloud
thicknesses 0f0.5, 1.0, 1.5,2.0,4.0,6.0,8.0and 12.0. This
comparison gives an average difference, defined in a
similar way to equations (19) and (20), of 0.0214 with a
standard deviation of 0.016 for the 48 cases. This
suggests that the use of total cloud efficiencies and total
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phase functions for radiative transfer problems is quite
adequate for the range of parameters investigated here.

4. CYLINDRICAL GEOMETRY

4.1. Isotropic scatter in cylindrical geometry

A common technique for the solution of radiative
transfer in enclosures is the zone method, detailed by
Hottel and Sarofim [13]. The enclosure is divided into
gas and surface zones of constant radiative properties
and temperatures. The direct radiative transfer
between zones in a non-reflecting enclosure and non-
scattering medium is proportional to the difference in
the emissive powers of the two zones:

Q.’:j = SiTj(Ei_ Ej)-

The proportionality constant 55; is termed the direct
exchange area. The net radiative transfer between any
twozonesinascattering medium bounded by reflecting
surfaces must take into account the emissivity of the
enclosure walls and the scattering properties of the
medium. A total interchange area can therefore be
defined which accounts for these properties:

21

i=j = S:iS;{E:—E;)). (22)
Hottel and Sarofim [13] have detailed a method by
which 5;S; may be calculated from 5;5;in an enclosure
with reflecting surfaces and an isotropically scattering
medium. Data for direct exchange areas is available for
simple zone shapes, e.g. square, cube, cylindrical and
annular [13] and therefore the method is restricted to
enclosures of these shapes. Although the method is
probably the most common for non-scattering media, it
has rarely been used for scattering media.

The Monte Carlo technique has been previously
used by Gupta and Datta [21] for the computation of
direct and total exchange areas in cylindrical
geometries for gray gases. By this method the total
exchange area S5} is estimated as the ratio of the net
number ofenergy bundles received by zonej to the total
number of bundles emitted by zone i. Being a statistical
method, the exchange areas obtained by this technique
will necessarily be in error and the following
conservation relationship will not hold exactly:

gi—jz Sj b (23)
Z Su_;'*' SIGk = A,8,,
) k
Y. GS+Y. GG, = 4K (1—w)V; (24)
i k

The exchange areas should therefore be normalized
before proceeding to calculate the radiative heat
transfer.

Vercommen and Froment [22] have described a
least-square technique to normalize the exchange
areas. This method requires the solution of N x
(N—1)/2 simultaneous linear algebraic equations
(that is, the inversion of an N x (N — 1)/2 order matrix
where N is the number of zones).
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A simpler alternative offered here is as follows:

(1) Firstofall, the symmetricrelationship, described
by equation (23), is enforced by substituting STS;and
55 by their averaged value.

(2) For each surface zone calculate

Y. 855+Y.5.G— A
Ag; ’

(3) Normalize the exchange area row and column of
highest &; in the following manner

Ry _ SiTinei
iY jlnormalized — Z STS;’*‘Z Sin'
Repeat this normalization scheme with rows and
columns for decreasing §;. This technique has been
compared to that of Vercommen and Froment’s [22],
the difference in exchange areas by the two methods

being defined by the following relation which sums the
weighted difference between all (N) surface/surface,

6i=

(25)

(26)

gasfsurface and gas/gas total exchange area
combinations:
1 XY, —-XY*
A=— Lt W; 27
NN( 5y, |* ) @
where
XY, = 55,575.G5; 6,5, GG, GG (28a)
and
XY+
W;==——— for ia surface zone, (28b)
i€
and
0% .
W= KV for i a gas zone. (28¢c)

X;Y;* is the best estimate for the exchange area, being
that by the Hottel and Sarofim [13] method for
isotropic scatter. Although it will later be shown that
the Hottel and Sarofim method may also be in error, 2
valid comparison of the normalization techniques can
be made with this common basis.

The weighting W; is used to suppress any undue
increasein A due to very small exchange areas, in which
relative error is comparatively very high, though these
exchange areas are of little significance in overall heat
transfer.

The total exchange areas for a cylindrical furnace
with an L/D of 0.5 [as shown on Fig. 6(b)] were
estimated by the two normalization techniques for
extinction coefficients 0f0.1,0.25,0.5,and 0.75m ™~ ! and
albedos of scatter 0f 0.2, 0.5, 0.8 and 0.9. The enclosure
walls were assigned an emissivity of unity so as to study
the effect of scatter of the cloud alone.

Table 2 summarizes the statistics for the 16 cases,
indicating that the two normalizations are of
comparable accuracy. The computation time for
normalization is approximately proportional to the
sixth power of the number of zones in Froment’s
technique, while in this present technique it is directly
proportional. Wesuggest thatcomputationaleconomy
Justifies the use of our alternative simple procedure.
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F1G. 6. Isotropicscatter—the predicted radiative heat transfer
to a sink at 800 K in two cylindrical furnaces zoned as
indicated.

Figure 7 presents the difference in the total exchange
areas, computed by the zone method and the Monte
Carlo technique using the normalization of equation
(26) for a cylindrical geometry with L/D = 3.0. Twelve
axialsubdivisions were used in the zone method. Figure
7 demonstrates that the difference in the total exchange
areas increases with the albedo of scatter, and this
increase becomes much more pronounced at high
extinction coefficients. This suggests that at high
extinction coefficients and higher albedos of scatter, the
zone method requires even a finer zoning subdivision
than used here, and that the Monte Carlo technique
might be preferred in scattering systems.

To conclude the calculation, after having obtained
the total exchange areas, the radiative transfer to any
zone can be computed from the following equations

Q.= —AgE+Y SSE+Y.SGE, (29
7 x

if i is a surface zone,

01 = —4K(1—)VE+Y GSEi+Y. GGE, (30)
j x

if i is a volume zone.

These equations have been used to predict the net
radiative transfer to the cylindrical surface for
cylindrical geometries with L/Dratios of0.5and 3.0and
the zoning and temperature profiles shown in Fig. 6.
The influence of the extinction coefficient K, and the

Table 2. Comparison of the estimates of total exchange areas
S,5; by the least squares technique of ref. [22] and the present
technique [equations (25) and (26)]

Least
squares Present
Statistic technique technique
Average, A 0.0111 0.0134
Standard deviation of A 0.0054 0.0057
Maximum 0.0268 0.0262




[y
(=
wy
(=)

0.08

006

003

A, DIFFERENCE IN TOTAL EXCHANGE AREAS

| | | !
0 02 0.4 06 08 10

ALBEDO OF SCATTER  w=Ks/Kg
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scattering in cylindrical geometry (L/D = 3.0 of Fig. 6), from
equation {27).

scattering albedo demonstrates that the net radiative
transfer to the sink zone (i.e. cylindrical surface)
decreases as the albedo of scatter increases and the rate
ofincrease of transfer with albedo of scatteris a function
not only of the extinction coefficient but also of L/D.

4.2. Anisotropic scatter in cylindrical geometry

The conclusions of the previous sections suggest the
following procedure for the estimation of radiative heat
transfer by fly ash in furnaces by the Monte Carlo
method :

(1) Use Mie theory to calculate the cloud efficiencies
and the cloud phase function for a mean gas
temperature and measured particle size distribution,
and the effective complex absorption index of the
particles. An effective complex refractive index can
account for the heterogeneity of fly ash as discussed in
Section 2.2

(2) Divide the enclosure into a number of zones and
compute the total exchange areas, normalized
according to equation (26).

(3) Iterate through the heat balances for the
temperature of each zone by the usual technique
described by Hottel and Sarofim [13] and calculate the
net radiative transfer to the heat sinks (absorbing walls)
of the furnace using equations (29) and (30). If the
temperature distribution is known the iterative step is
omitted.

A moreaccurate alternative could be to use the spectral
cloudefficienciesinstead of the efficiencies at a mean gas
temperature and to obtain the radiative transfer by
integrating the spectral radiative exchange between
each zone. Fortunately, a comparison of the
hemispherical radiative properties for plane parallel
slabs, calculated by these two methods detailed in
Section 3.3 suggests that such an elaborate procedureis
not warranted.

The predictions using the procedure 1-3 above for
theradiative transfer to the sink of the furnace sketched
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F1G. 8. Predicted radiative transfer to the sink of the furnace of
Fig. 6 with L/D = 3. Coarse ash size distribution, with cloud
properties estimated at 1500 K.

on Fig. 6 with an L/D =3, and diameter of 4 m—
corresponding to the shape of an end fired industrial
furnace—are shown on Fig. 8§(a). Figure 8(b) compares
these estimates with those made using two extreme
simplifying assumptions regarding scatter: the scatter
is neglected completely (K, = K,); the scatter is
isotropic with p(ut) = 1;and C(u) = u+1,as shownon
Fig. 2.

Neglecting scatter is seen to overestimate transfer,
while considering scatter to be isotropic under-
estimates transfer. Both estimates depend on the
absorption index, n', and the multiple of the dust
burden with the cloud projected area, BA,; neither
gives adequate predictions for engineering calcu-
lations. The projected area A4, for fly ash may range
from 75to 125m?2 kg™ ! while the dust burden may vary
from 2 to 20 g m™>. The range of interest on Fig. 8 is
therefore 0.15 < B4, [m~'] < 2.5.

5. SIMPLE MODELS FOR
ANISOTROPIC SCATTERING

While the above procedures with the two extreme
simplifying assumptions do not give adequate
predictions—both resulting in errors of up to 309 over
the range of parameters of practical interest—the
results of Fig. 8 suggest that a weighting might be
assigned to the results for each extreme. In fact, the
average of the ‘scatter neglected’ and ‘isotropic scatter’
extremes appeats, from Fig. 8, to be such a possibility.
The ease with which radiative heat transfer can be
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calculated for the extremes, compared to the difficulty
of handling anisotropic scatter, certainly justifies the
investigation of this possibility.

There have been several attempts to reduce the
highly anisotropic phase function to simple phase
functions, i.e. a delta function in the forward direction
together with a much simpler phase function [23].
The simpler phase function, in general, has been taken
as a linear anisotropic phase function [24, 25],
commonly known as the §-Eddington approximation.
Lee and Buckius [26] have also described scaling
factorsforconvertingananisotropicscatter problemto
an isotropic scatter problem. In the present work
similar approximations will be investigated.

Anisotropically scattered radiation can be ap-
proximated by a sum of isotropically scattered and
forward directed components. If « is the fraction of
anisotropically scattered radiation assumed to scatter
isotropically and the balance is forward directed, then
the phase function can be written as

p(p) = a+2(1 —a)S(pe—1), 31

where 6(1— 1) is a Dirac delta function that satisfies the
following equation

o

'[ S(¥)o(x—x,)dx = f(x,). (32

—x®
Anisotropic scattering with a scattering coefficient K,
and phase function given by equation (31) is exactly
equivalent to isotropic scattering with a scattering
coefficient aK . The application of the following simple
models therefore involves the calculation for isotropic
scatter only, but with oK, being used as the scattering
coefficient.

A number of criteria for estimating e which are based
on the gross characteristics of the simplified phase
function given by equation (31) and the actual phase
function can now be examined.

(1) « may be estimated by equating the fraction of
scatter in the forward hemisphere (f) for the simplified
and actual phase functions:

l 1
f=—j PR dp=1-2 (33)

2 Jo
or
ay =2(1—f). (34)

This approximation is equivalent to the two flux
approximation of Lee and Buckius [26].

(2) The second alternative equates the peakedness,
(Pe), defined as the ratio of the second and zeroth
moment of the phase function in the forward direction
(ref. [13], p. 434). That is

1
1 J #2p(p)dp
0
s (33)

and
(36)

BMY 26:11-P
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(3) Another alternative is provided by analogy with
the well-known six-flux method for approximating
radiative transfer. This considers scatterin six mutually
perpendicular directions—forward, backward and to
the four sides (ref. [13], p. 433). The difference between
the fraction scattered in the forward and backward
dircctions may then be approximated as (1 —a) to give

1 0
j Wp(p)dp —.[ 12p(y) dy
O -1

‘. 2
J p(p)du
-1

1 1 0
a3=1—5|: j HZP(ﬂ)dlt—J ;t’p(u)du]- (3%)
0 1

37

l—a, =

or

(4) Equating the area under cumulative phase
functions gives

1 1
J Clydpu = Z—J up(p)dp = 2a,,
1 1

(39)

so that

1 1
oy =1-— 3 J pp(pydp = 1=, (40)

where () is equal to half the first moment of the phase
function and is termed as the asymmetry factor.

This approximation has been considered by Lee and
Buckius [26] and has been shown to be the best among
their approximations for a plane parallel geometry.

(5) The final alternative uses the least squares
criterion to minimize the deviation of the simplified
cumulative phase function from the actual cumulative
phase function, that is

1
min {f [C() — (1 +p)]? dp}. (41)
-1
The value of « that satisfies the above expression is
evaluated from

Jl [C()—a(l+p)](1+p)du =0. (42)

Equation (42) can be simplified to give

l 1 1
% =T¢ [18 ~6J up()dp—3 .[ ! 1#£2p(w) du]- 43)
1

For the given particle size distribution, Table 3
compares the five estimates for « for various complex
absorption indices. These simple models are evaluated
by comparing predictions obtained using the exact
phase function and the approximate phase function

Table 3. Comparison of the estimates for o

n o a, as oy as
0.005 0.165 0.556 0.352 0.280 0.316
0.01 0.153 0.545 0.338 0.267 0.304
0.02 0.136 0.527 0.315 0.245 0.284
0.05 0.103 0484 0.269 0.204 0.242
0.10 0.079 0.436 0.228 0.168 0.204
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Table 4. Difference (%) between estimates of hemispherical
properties of a plane parallel geometry for anisotropic scatter
and the simple models for anisotropic scatter

1

n oy oy oy oty As

0.005 17.13 24.27 7.01 1.71 3.31
0.01 14.12 22.55 7.59 2.18 4.36
0.02 10.69 21.05 7.11 2.14 4.53
0.05 8.02 14.06 2.82 1.75 0.80
0.10 5.28 9.91 204 142 0.75

given by equation (31)in the plane parallel geometry as
well as in the cylindrical geometry.

Table 4 presents the comparison of hemispherical
properties for a plane parallel geometry with BA,
varying from 0.5 to 120 m™!, using the various
estimates for a. The difference in the estimates of the
properties does not vary significantly within this range
of BA,, while the difference in the estimates increases
with an increase in scattering albedo (i.e. lower
absorptionindex). o, was found to underestimate the
hemispherical absorptivity and transmissivity, whilea,
overestimates these. The comparison demonstrates the
superiority of the approximation by o, for this
geometry, but a, and «5 also give reasonable estimates.

In the cylindrical geometry [see Figure 6(a)], o,
overestimates the radiative transfer while o, under-
estimates transfer. Theerror increases for high values of
BA, and low values of the absorption index.

Table 5 presents the statistics for the comparison of
radiative transfer and exchange areas for the five
approximations for thin (BA,<05) and thick
(BA, = 1.0} fly ashclouds. Table Ssuggests that for thin
clouds (equivalent to a dust burden of 5gm™3 with a
projected area of 100 m? kg~!) o is the best
approximation. For higher dust burdens, a5 is the best
approximation, but o, and a4 also give reasonable
predictions (within 5%) which are quite adequate for
engineering calculations of heat transfer.

6. CONCLUSIONS

For the calculation of radiative transfer in furnaces
the particle cloud efficiencies for fly ash clouds may

R. P. Gurta, T. F. WALL and J. S. TRUELOVE

be assigned at a mean furnace temperature. The
efficiericies are primarily dependent on the complex
absorption index with a secondary dependence on the
sizedistribution of the fly ash and the temperature, with
the present uncertainties in the absorption index
having greater effect than the known variation of size
and temperatures. :

The Monte Carlo technique can.be used for the
calculation of radiative heat transfer in scattering
media with an accuracy determined by the number of
energy bundles tracked. For anisotropic scatter,
characteristicofall fine dielectric particlesand flyashin
particular, no other technique appears able to handle
the complexity necessary for calculations in furnace
enclosures. Neglecting scatter overestimates transfer
while considering scatter to be isotropic under-
estimates transfer.

Approximating anisotropic scatter by a forward
directed flux and anisotropically scattered flux can give
adequate engineering estimates of radiative heat
transfer.
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APPENDIX

Lowe [2] studied the particle size distribution of fly ashes
from a number of power stations in NSW. A bimodal log-
normaldistribution was found to fit the size distribution for fly
ashesaccurately, by least square fit. Theleast square technique
was also used to fit the experimental data to an empirical
discontinuous function of the form

F(s) = C, exp(—Cy/s), (Ala)
= exp(—Cy/s), (A1b)

The constants in equations (A1a) and (A1b), and the statistics
of the fitare presented in Table A1. Table A2 presents the mass
median and RMS diameters for these distributions, and mass
fractionand theareafractionexpressed byequation{A1a). The
particle cloud of RMS diameter 2.75 ym, has about 35%
greater projected area as compared to that of RMS diameter
3.68 um,

The radiative properties of a particle cloud depend on the
projected area and equation (A 1a) expresses more than 90% of
the area for all three distributions. Therefore equation (Ala)
may be extended to equation {A2)

F(s) = C, exp(—C,/fs), 0<s<o0. (A2)

This expression represents the size distribution at the finc end
and the cumulative area distribution up to about 929 very
accurately.

Equation (A2) [which is the same as equation (7) in Section
2.2], is therefore used for evaluating the cloud efficiencies.

0<s<sy,

$; <5< 00.

Table Al. Constants for empirical equations (Ala) and (A1b)
for some ash size distribution for three power station coals.

zone method using Monte Carlo techniques for the
simulation of radiation in industrial furnaces, Int. J. Heat
Mass Transfer 23, 329-337 (1980).
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Adapted from Lowe [2]
Standard

Station Sizerange  error
coal Equation for F(s) (um) (VA
0929 exp(—6.742/s)  0-37 32
Wallerawang 1™ Ly p(—0470/s) 37+ 23
. 0.743 exp(—7.814/s) 0-40 19
Liddell 10  exp(—19.70/s) 40+ 23
0.726 exp (—8.750/s) 0-35 1.6
Munmorah /5™ o0 (_1096/s) 354 25

Table A2. Mass median diameters, range of validation for, and mass and area
fraction expressed by equation (Ala)

Mass median RMS Area fraction
diameter diameter s, expressed by
Station coal (pm) (um) (um) F(s,) equation (Ala)
Wallerawang 11 2.76 37 077 0.98
Liddell 20 3.25 40 061 095
Munmorah 24 3.65 35 0.56 093
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DIFFUSION DU RAYONNEMENT PAR LES POUSSIERES VOLANTES DANS
LES FOYERS A CHARBON PULVERISE: APPLICATION DE LA METHODE
DE MONTE CARLO A LA DIFFUSION ANISOTROPE

Résumé—Les propriétés d’absorption, de diffusion et dextinction d’un nuage de poussiére volante sont

principalement liées & I'indice complexe d’absorption des particules avec une dépendance secondaire 4 la

température et & ladistribution des tailles des particules. Laméthode de Monte Carloest utilisée pour calculer

le transfert radiatif dans des volumes de plaque et de cylindre. Une diffusion anisotrope approchée par un flux

dirigé en avant plus un flux de diffusion isotrope donne des estimations correctes du transfert, et on examine
plusieurs critéres pour évaleur la fraction de diffusion isotrope.

STRAHLUNGSSTREUUNG DURCH FLUGASCHE IN KOHLENSTAUB-GEFEUERTEN OFEN:
ANWENDUNG DES MONTE-CARLO-VERFAHRENS AUF ANISOTROPE STREUUNG

Zusammenfassung—Es wird gezeigt, daB die Wirkungsgrade von Absorption, Streuung und Extinktion einer

Flugaschenwolke in erster Linic vom komplexen Absorptions-Index der Partikel abhiingen und in zweiter

Linie vonder Verteilung von Temperatur und PartikelgroBe. Weiterhin wird dann mit Hilfe des Monte-Carlo-

Verfahrens der Strahlungswirmeaustausch in rechteckigen und zylindrischen Brennkammern berechnet.

Eine angemessene Abschitzung der Austauschvorginge 1aBt sich dadurch erzielen, daB die anisotrope

Streuung durch einen direkten und einen isotrop gestreuten StrahlungsfluB angenahert wird. Einige Kriterien
zur Abschitzung des Anteils der isotropen Streuung werden untersucht.

PACCESIHHME JIVUUCTOI'O [IOTOKA JIETVYUEI 30JI0M B MbUIEYIOJIbHBIX TOMKAX:
NPUMEHEHHE METOJA MOHTE KAPJIO JIA PACYETA
AHH3OTPOITHOI'O PACCEAHHA

Annoramms—IToxa3aHo, 4To norjouweHie, paccesHye H ‘‘rawenne” naameny obnakoM neryyeit 30an1

B OCHOBHOM 3aBHCHT OT CJI0XHOTO XapaKTEpa MNOKa3aTess MOINIOMIEHHS HACTHU H AOMOJHMTENBLHO

OT TEMMEPATYphl i paclpele/ieHHa 4acTHI Mo pa3mepaM. Meroaom Monte Kapao paccunteiBaeTcs

JIYYHCTHIT NepeHoC B NJIOCKOf M IUIHHApHYecKoii nonocTax Tonok. flokasano, 4yTo annpoxcuMauus

aHH3OTPOMHOIO paccesHHs MOTOKOM ‘‘Bneped” M HIOTPOMHO PACCEAHHBLIM MOTOKOM TI03BONSET

NONY4HTb aICKBATHBIC OUEHKH MepeHoca. PaccMOTpeHo HecKOJIbKO KPHTEPHEB 718 ONpPEaesieHHs J01H
H3IOTPOMHOrO PaccesAHHs.





